Bài viết này phía dẫn những em học viên lớp 8 phương pháp chia đa thức, một dạng toán quen thuộc trong công tác Đại số 8.
Bạn đang xem: Cho đơn thức
Đi kèm với kim chỉ nan chia đối chọi thức, chia đa thức là lấy ví dụ minh họa, sau cuối là bài xích tập tự giải.
1. Chia đối kháng thức cho đối kháng thức
Quy tắc :
Muốn chia đơn thức A cho 1-1 thức B (trường hợp A phân chia hết cho B) ta có tác dụng như sau :
Chia hệ số của solo thức A cho thông số của đơn thức B.
Chia lũy quá của từng biến đổi trong A mang lại lũy thừa của cùng đổi thay trong B.
Nhân các tác dụng lại cùng với nhau.
Nhắc lại bí quyết :
am : am = am – n
Ví dụ minh họa :
8x3y2z : 2xy = (8 : 2).( x3 : x).(y2 : y).z = 4.x2.y.z
2. Phân chia đa thức cho đơn thức
Quy tắc :
Muốn chia đa thức A cho đối chọi thức B (trường hợp các hạng tử trong đa thức A phân tách hết cho đối chọi thức B) ta phân tách từng hạng tử trong nhiều thức A mang lại B rồi cùng các tác dụng với nhau.
Ví dụ minh họa (bài 64 trang 28 SGK ):
(3x2y2 + 6x2y3 – 12xy) : 3xy
= (3x2y2 : 3xy )+ (6x2y3 : 3xy ) +(– 12xy : 3xy) = xy + 2xy2 – 4
3. Phân tách đa thức một biến đổi đã sắp đến xếp
Ta có :
A : B = C dư D.
Nếu D = 0 thì A chia hết mang lại B.Nếu D ≠ 0 thì A không chia hết cho B.Ví dụ minh họa (bài 67 trang 31 SGK ):
(2x4 – 3x3 – 3x2 – 2 + 6x) : (x2 – 2 ) = (2x4– 3x3 – 3x2 + 6x – 2) : (x2 – 2 )
Sắp thành bảng phép chia :
2x4– 3x3 – 3x2 + 6x – 2 | x2 – 2 |
A | B |
Bước 1 :
Tiếp theo : rước (đơn thức bậc cao nhất của nhiều thức bị chia) chia cho (đơn thức bậc cao nhất của đa thức chia) : B = 2x4 : x2 = 2x2
A = (x2 – 2) . B = (x2 – 2). 2x2 = 2x4 – 4x2
Ta được :
– | 2x4– 3x3 – 3x2 + 6x – 2 | x2 – 2 |
2x4 – 4x2 | 2x2 |
Tiếp theo : mang (đa thức bị chia) trừ mang lại A :
– | 2x4– 3x3 – 3x2 + 6x – 2 | x2 – 2 |
2x4 – 4x2 | 2x2 | |
O – 3x3 + x2 + 6x – 2 |
Bước 2 + 3 : giống cách 1 tuy thế đa thức bị phân tách là hiệu quả của phép trừ : – 3x3 : x2 = -3x
– | 2x4– 3x3 – 3x2 + 6x – 2 | x2 – 2 |
2x4 – 4x2 | 2x2 – 3x + 1 | |
– | O – 3x3+ x2 + 6x – 2 | |
– 3x3 + 6x | ||
– | x2 – 2 | |
x2 – 2 | ||
0 |
Trong D = 0 : phân chia hết.
Vậy : (2x4 – 3x3 – 3x2 – 2 + 6x) : (x2 – 2 ) = 2x2 – 3x + 1
BÀI TẬP SGKBÀI 59 TRANG 29 :
a) 53 : (-5)2 =53 : 52 =53-2 = 5
b)






c) (-xy)10 : (-xy)5 =(-xy)10-5 = (-xy)5 = -x5y5
BÀI 61 TRANG 22 :
Tính cực hiếm của biểu thức : 15x4y3z2 : 5xy2z2 tại x = 2, y = – 10 và z = 2004.
Xem thêm: Bài Tập Lớp 8 Phân Tích Đa Thức Thành Nhân Tử Học Sinh Cần Nhớ
Rút gọn : A = 15x4y3z2 : 5xy2z2 = (15 : 5).( x4: x).( y3: y2).( z2: z2) = 3.x3.y.1 = 3x3y
Khi : x = 2, y = – 10 với z = 2004 thì A = 3.23 .(-10) = -240
BÀI 64 TRANG 28 SGK:
a) (-2x5 + 3x2 – 4x3) : 2x2 = (-2x5 : 2x2 ) + (3x2 : 2x2 ) + (– 4x3: 2x2) = -x3 + 3/2 – 2x
c) (3x2y2 + 6x2y3 – 12xy) : 3xy = (3x2y2 : 3xy )+ (6x2y3 : 3xy ) +(– 12xy : 3xy)
= xy + 2xy2 – 4
BÀI 67 TRANG 31 SGK:
a) (x3 – 7x + 3 – x2) : (x – 3) = (x3 – x2– 7x + 3) : (x – 3)
– | x3 – x2– 7x + 3x3 – 3x2 | x – 3 |
x2 + 2x – 1 | ||
– | O + 2x2 – 7x + 32x2 – 6x | |
– | – x + 3– x + 3 | |
0 |
Vậy : (x3 – 7x + 3 – x2) : (x – 3) = x2 + 2x – 1
b) (2x4 – 3x3 – 3x2 – 2 + 6x) : (x2 – 2 ) = (2x4– 3x3 – 3x2 + 6x – 2) : (x2 – 2 )
– | 2x4– 3x3 – 3x2+ 6x – 22x4 – 4x2 | x2 – 2 |
2x2 – 3x + 1 | ||
– | O – 3x3+ x2 + 6x – 2 – 3x3 + 6x | |
– | x2 – 2x2 – 2 | |
0 |
Vậy : (2x4 – 3x3 – 3x2 – 2 + 6x) : (x2 – 2 ) = 2x2 – 3x + 1
BÀI 68 TRANG 31 SGK:
Áp dụng hằng đẳng thức lưu niệm để tiến hành pháp chia :
a) (x2 + 2xy + y2) : (x + y) = (x + y)2 : (x + y) = (x + y)
b) (125x3+ 1) : (5x + 1) = ((5x)3 + 13) : (5x + 1) = (5x + 1) (25x2 – 5x + 1) : (5x + 1)
= 25x2 – 5x + 1
c) (x2 – 2xy + y2) : (y – x) = (x – y)2 : -(x – y) = – (x – y)
BÀI 69 TRANG 31 SGK:
Cho hai đa thức : A = 3x4 + x3 + 6x – 5 cùng B = x2 + 1. Search dư R trong phép chia A đến B. Rồi viết A = B.Q = R
– | 3x4 + x3 + 6x –53x4 + 3x2 | x2 + 1 |
3x2 + x – 3 | ||
– | O + x3 – 3x2 + 6x – 5x3 + x | |
– | – 3x2 + 5x – 5– 3x2 – 3 | |
5x – 2 |
dư R = 5x – 2
A = (x2 + 1)(3x2 + x – 3) + 5x – 2
BÀI 74 TRANG 32 SGK:
Tìm số a để đa thức 2x3 – 3x2 + x + a chia hết mang lại x + 2
– | 2x3 – 3x2+ x + a2x3 +4x2 | x + 2 |
2x2 – 7x + 15 | ||
– | O – 7x2+ x + a– 7x2– 14x | |
– | 15x + a 15x + 30 | |
a – 30 |
Phép phân tách hết khi : a – 30 = 0 a = 30
BÀI 83 TRANG 33 SGK:
TÌM n thuộc Z để 2n2 – n + 2 chia hết 2n + 1.
– | 2n2– n + 22n2 + n | 2n + 1 |
n – 1 | ||
– | O – 2n + 2– 2n – 1 | |
3 |
Phép phân chia hết lúc : 2n + 1 có mức giá trị là U(3) = ±1; ±3
khi : 2n + 1 = 1 => n = 0khi : 2n + 1 = -1 => n = -1khi : 2n + 1 = 3 => n = 1khi : 2n + 1 = -3 => n =-2Vậy : n = 0, – 1, 1, – 2