Toán học lớp 10 với nhiều kiến thức quan trọng, là nền tảng để học sinh ôn thi THPT Quốc gia. Kiến thức đường parabol là gì, cách lập phương trình parabol cũng như phương pháp xác định tọa độ đỉnh parabol là những thắc mắc được nhiều bạn quan tâm. Bài viết dưới đây của briz15.com sẽ giúp bạn tổng hợp về chủ đề cách lập phương trình parabol cũng như những nội dung liên quan, cùng tìm hiểu nhé!. 


Thì đường parabol là tập hợp tất cả các điểm M cách đều F và \(\Delta\).

Bạn đang xem: Đỉnh của parabol

Điểm F được gọi là tiêu điểm của parabol.

Đường thẳng \(\Delta\) được gọi là đường chuẩn của parabol.

Khoảng cách từ F đến \(\Delta\) được gọi là tham số tiêu của parabol.

*
Định nghĩa đường Parabol

Vậy một đường parabol là một tập hợp các điểm trên mặt phẳng cách đều một điểm cho trước (tiêu điểm) và một đường thẳng cho trước (đường chuẩn).

Định nghĩa phương trình Parabol

Phương trình Parabol được biểu diễn như sau: \(y = a^{2}+bx+c\)

Hoành độ của đỉnh là \(\frac{-b}{2a}\)

Thay tọa độ trục hoành vào phương trình, ta tìm được hoành độ Parabol có công thức dưới dạng: \(\frac{b^{2}-4ac}{4a}\)

Phương trình chính tắc của Parabol

Phương trình chính tắc của parabol được biểu diễn dưới dạng:

\(y^{2}= 2px (p> 0)\)

Chứng minh:

Cho parabol với tiêu điểm F và đường chuẩn \(\Delta\).

Kẻ \(FP\perp \Delta (P \in \Delta )\). Đặt FP = p.

Ta chọn hệ trục tọa độ Oxy sao cho O là trung điểm của FP và điểm F nằm trên tia Ox.

*

Suy ra ta có \(F= (\frac{P}{2};0), P= (-\frac{P}{2};0)\)

Và phương trình của đường thẳng \(\Delta\) là \(x + \frac{p}{2} = 0\)

Điểm M(x ; y) nằm trên parabol đã cho khi và chỉ khi khoảng cách MF bằng khoảng cách từ M tới \(\Delta\), tức là:

\(\sqrt{(x- \frac{p}{2})^{2}+ y^{2}} = \left | x + \frac{p}{2} \right |\)

Bình phương 2 vế của đẳng thức rồi rút gọn, ta được phương trình chính tắc của parabol:

\(y^{2}= 2px (p> 0)\)

Chú ý: Ở môn đại số, chúng ta gọi đồ thị của hàm số bậc hai \(y = ax^{2} + bx + c\) là một đường parabol.

Cách xác định tọa độ đỉnh của parabol

Ví dụ: Xác định tọa độ của đỉnh và các giao điểm với trục tung, trục hoành (nếu có) của mỗi parabol.

a) \(y = x^{2} – 3x + 2\)

b)\(y = -2x^{2} + 4x – 3\)

Hướng dẫn:

a) \(y = x^{2} – 3x + 2\). Có hệ số: a = 1, b = – 3, c = 2.

\(\Delta = b^{2} – 4ac\) = (-3).2 – 4.1.2 = – 1

Tọa độ đỉnh của đồ thị hàm số \(I(\frac{-b}{2c};\frac{-\Delta }{4a})\)

Hoành độ đỉnh \(x_{I} = \frac{-b}{2a} = \frac{-3}{2}\)Tung độ đỉnh \(y_{I} = \frac{-\Delta }{4a} = \frac{-1}{4}\)

Vậy đỉnh parabol là \(I (\frac{-3}{2};\frac{-1}{4})\)

Cho x = 0 → y = 2 ⇒ A(0; 2) là giao điểm của đồ thị hàm số với trục tung.

Cho y = 0 ↔ \(x^{2} – 3x + 2 = 0\) ⇔ \(\left\{\begin{matrix} x_{1} = 1 & \\ x_{2} = 2 & \end{matrix}\right.\)

Suy ra B(1; 0) và C(2; 0) là giao điểm của đồ thị hàm số với trục hoành.

b) Cho \(y = -2x^{2} + 4x – 3\). Có a = -2 , b = 4, c = -3

Δ = \(\Delta = b^{2} – 4ac\) = 42 – 4. (-2).(-3) = – 8

Tọa độ đỉnh của đồ thị hàm số \(I(\frac{-b}{2c};\frac{-\Delta }{4a})\)

Hoành độ đỉnh \(x_{I} = \frac{-b}{2a} = 1Tung độ đỉnh y_{I} = \frac{-\Delta }{4a}= 1

Vậy đỉnh parabol là I (1; 1)

Cho x = 0 => y = – 3 ⇒ A(0; -3) là giao điểm của đồ thị hàm số với trục tung.

Xem thêm: Quy Luật Phân Li Độc Lập Góp Phần Giải Thích Hiện Tượng

Cho y = 0 => -2x^{2} + 4x – 3 = 0\)

\(\Delta\) = b2 – 4ac = \(4^{2}\) – 4. (-2).(-3) = – 8

Phương trình vô nghiệm ⇒ không tồn tại giao điểm của hàm số với trục hoành.

Cách lập phương trình Parabol

*

*

*

Sự tương giao giữa đường thẳng và Parabol

*

*

*

Bài viết trên đây đã giúp bạn tổng hợp các kiến thức về chủ đề phương trình parabol. Hy vọng đã cung cấp cho bạn những kiến thức hữu ích phục vụ cho quá trình nghiên cứu cũng như học tập về phương trình parabol. Chúc bạn luôn học tốt!.