A. CÁC DẠNG BÀI TẬP HÌNH 7 HỌC KÌ 1
DẠNG 1. KIỂM TRA hai ĐƯỜNG THẲNG song SONG, nhị ĐƯỜNG THẲNG VUÔNG GÓC. VẼ ĐƯỜNG THẲNG tuy vậy SONG, ĐƯỜNG THẲNG VUÔNG GÓC, ĐƯỜNG TRUNG TRỰC.
Bạn đang xem: Một số bài toán hình lớp 7 có lời giải
Phương pháp giải.
Sử dụng lốt hiệu nhận thấy hai mặt đường thẳng tuy vậy song, khái niệm và vệt hiệu nhận ra hai con đường thẳng vuông góc, định nghĩa hai đường trung trực.
Ví dụ: (Bài 55 tr.103 SGK)
a) các đường thẳng vuông góc cùng với d đi qua M, N.
b) những đường thẳng tuy nhiên song với e trải qua M, N.
Giải.

a) Đường thẳng a đi qua M và vuông góc cùng với d. Đường trực tiếp b trải qua N và vuông góc với d.
b) Đường thẳng x trải qua M và song song với e. Đường thẳng y đi qua N và tuy nhiên song cùng với e.
DẠNG 2. TÍNH SỐ ĐO GÓC
Phương pháp giải.
Sử dụng các đặc thù của nhì góc đối đỉnh, hai góc kề bù, hai góc sản xuất bởi hai tuyến đường thẳng tuy nhiên song cùng với một đường thẳng đồ vật ba.
Ví dụ 2. (Bài 57 tr.104 SGK)
Cho hình 39 (SGK) (a // b) hãy tính số đo x của góc O.
Hướng dẫn.

Ví dụ 3. (Bài 59 tr.104 SGK)

Hướng dẫn.

DẠNG 3. PHÁT BIỂU MỘT ĐỊNH LÍ (BẰNG CÁCH ĐIỀN VÀO CHỖ TRỐNG, BẰNG CÁCH NHÌN VÀO HÌNH VẼ) HOẶC CHỌN CÂU PHÁT BIỂU ĐÚNG.
Phương pháp giải.
Liên hệ với những kiến thức tương ứng trong SGK để trả lời.
Ví dụ 4. (Bài 60 tr. 104 SGK)
Hãy phạt biểu các định lí được miêu tả bằng hình vẽ sau, rồi viết giả thiết, tóm lại của từng định lí.

Giải.
a) Nếu hai tuyến phố thẳng rõ ràng cùng vuông góc cùng với một đường thẳng thứ bố thì bọn họ song tuy vậy với nhau.

Nếu một đường thẳng vuông góc với một trong hai con đường thẳng tuy nhiên song thì vuông góc với đường thẳng kia.

b) Nếu hai đường thẳng cùng tuy nhiên song với một đường thẳng thứ tía thì song song cùng với nhau.

DẠNG 4. CHỨNG MINH MỘT ĐỊNH LÍ
Phương pháp giải.
Vẽ hình, viết mang thiết, kết luận, nêu xác minh và các lí vị tương ứng.
Ví dụ 5. chứng tỏ rằng nếu hai tuyến đường thẳng tuy vậy song giảm một mặt đường thẳng thứ ba thì những tia phân giác của nhị góc so le trong tuy nhiên song cùng với nhau.
Giải.

Chứng minh:
B. MỘT SỐ BÀI TẬP CÓ LỜI GIẢI
Bài 1: Vẽ hình cùng viết giả thiết, tóm lại của định lí sau :
Hai đường thẳng sáng tỏ cùng vuông góc cùng với một con đường thẳng trang bị 3 thì chúng tuy nhiên song với nhau.
Bài 2:
a) Hãy viết định lí nói đến một đường thẳng vuông góc với 1 trong các hai đường thẳng song song.
b) Vẽ hình minh họa, viết GT/KL bằng kí hiệu
Bài 3: Phát biểu định lí, viết GT, KL được biểu đạt bởi hình mẫu vẽ sau:
|
|
Bài 4: a) Hãy phát biểu định lí được biểu đạt bởi hình vẽ sau. b) Viết giả thiết và kết luận của định lí đó bằng kí hiêu |
|
Bài 5: Vẽ hình, viết giả thiết, kết luận của định lí: “Nếu hai tuyến phố thẳng tách biệt cùng song song cùng với một đường thẳng thứ tía thì chúng tuy nhiên song với nhau.”
Bài 6 : Vẽ hình, viết mang thiết, kết luận và chứng tỏ định lí: “Nếu hai tuyến phố thẳng thuộc vuông goc với một con đường thẳng thứ cha thì chúng tuy vậy song cùng với nhau.”
|
|
Bài 9: đến hình vẽ (hình 2). 1) vì sao m // n? 2) Tính số đo x của góc ABD |
Bài 10: Vẽ hình theo trình từ sau:
a) Góc xOy bao gồm số đo 600 , điểm A nằm trong góc xOy
b) Đường thẳng m trải qua A và vuông góc với Ox
c) Đường trực tiếp n trải qua A và tuy vậy song cùng với Oy
Bài 11: Cho đoạn thẳng AB dài 12cm. Hãy vẽ mặt đường trung trực của đoạn thẳng ấy. Nêu rõ biện pháp vẽ.
Xem thêm: Bài Dự Thi Vận Dụng Kiến Thức Liên Môn Để Giải Quyết Tình Huống Thực Tiễn Của Học Sinh
Bài 12: Hình vẽ sau cho biết thêm a//b ,
|
Bài 13: đến hình vẽ. Biết :
Chứng minh: xx’ // yy’. |
Bài 14:
|
|
Bài 15:
a) Đường trực tiếp a có song song với con đường thẳng b không ? vị sao? b) Đường thẳng b có song song với mặt đường thẳng c ko ? vị sao? c) Đường trực tiếp a có tuy vậy song với mặt đường thẳng c không ? vì chưng sao? |
Bài 16:
|
Bài 17:
|
Bài 18: |
|
Bài 19: đến hình vẽ bên. Biết E là trung điểm của AB ; ME vuông góc AB tại E với ME, MF theo thứ tự là tia phân giác của 1/ vị sao EM là con đường trung trực của đoạn trực tiếp AB ? 2/ chứng minh rằng: MF//AB |
Bài đôi mươi : Cho mẫu vẽ .
|
HƯỚNG DẪN GIẢI
Bài | Đáp án | |
1 | ||
2 | ||
3 | ||
4 | ||
5 | ||
6 | ||
7 | ||
8 | ||
9 | ||
10 | - Vẽ đoạn thẳng AB = 12cm - Vẽ trung điểm M của đoạn trực tiếp AB: trên tia AB, đem điểm M sao cho: - Qua M, vẽ mặt đường thẳng d vuông góc với AB Ta có: d là đường trung trực của đoạn thẳng AB | |
11 |
| |
12 | Vẽ đường thẳng c trải qua O và tuy nhiên song với a. Vì a//c buộc phải b//c , ta có: | |
13 |
| |
14 |
| |
15 |
| |
16 | ||
17 | ||
18 |