+ Nếu một hình thang có hai cạnh bên song song thì hai cạnh bên bằng nhau, hai cạnh đáy bằng nhau.

Bạn đang xem: Tính chất của hình thang

+ Nếu một hình thang có hai cạnh đáy bằng nhau thì hai cạnh bên song song và bằng nhau.

+ Hình thang vuông là hình thang có một góc vuông.

Ví dụ 1:


*

\(ABCD\) là hình thang. Khi đó:

+ \(AB{\rm{//}}CD\) , \(AB,CD\) là hai đáy, \(AD,BC\) là cạnh bên.

+ \(\widehat A + \widehat D = \widehat B + \widehat C = 180^\circ \)

+ Nếu $AD{\rm{//}}BC \Leftrightarrow \left\{ \begin{array}{l}AD = BC\\AB = CD\end{array} \right.$

+ Nếu \(AB = CD \Leftrightarrow \left\{ \begin{array}{l}AD = BC\\AD{\rm{//}}BC\end{array} \right.\)



Hình thang vuông: \(ABCD\) là hình thang có \(\widehat A = 90^\circ \) thì \(ABCD\) là hình thang vuông.


*


*

Tính chất:

+ Trong hình thang cân, hai cạnh bên bằng nhau.

+ Trong hình thang cân, hai đường chéo bằng nhau.


Dấu hiệu nhận biết:

+ Hình thang có hai góc kề một đáy bằng nhau là hình thang cân.

+ Hình thang có hai đường chéo bằng nhau là hình thang cân.


Ví dụ:

+ \(ABCD\) là hình thang cân thì \(AD = BC;\,AC = BD\)

+ Tứ giác \(ABCD\) có \(\left\{ \begin{array}{l}AB{\rm{//}}CD\\\widehat D = \widehat C\end{array} \right.\) \( \Leftrightarrow ABCD\) là hình thang cân.

+ Tứ giác \(ABCD\) có \(\left\{ \begin{array}{l}AB{\rm{//}}CD\\\widehat A = \widehat B\end{array} \right.\) \( \Leftrightarrow ABCD\) là hình thang cân.


+ Tứ giác \(ABCD\) có \(\left\{ \begin{array}{l}AB{\rm{//}}CD\\AC = BD\end{array} \right.\) \( \Leftrightarrow ABCD\) là hình thang cân.

2. Các dạng toán thường gặp

Dạng 1: Chứng minh và tính các góc của hình thang, hình thang vuông hình thang cân dựa vào tính chất hình.

Phương pháp:

Ta sử dụng các kiến thức:

+ Tính chất của hình thang, hình thang vuông, hình thang cân (ở trên)

+ Tổng bốn góc của một tứ giác bằng$360^\circ $ .

+ Góc ngoài của tứ giác là góc kề bù với một góc của tứ giác.

+ Hai góc kề một cạnh bên của hình thang bằng ${180^0}$ .

Xem thêm: Công Thức Diện Tích Tam Giác Vuông, Cân, Đều, Công Thức Tính Diện Tích Tam Giác

Dạng 2: Chứng minh một tứ giác là hình thang, hình thang vuông, hình thang cân

Phương pháp:

Ta sử dụng định nghĩa và các dấu hiệu nhận biết để chứng minh

*


*
Bình luận
*
Chia sẻ
Chia sẻ
Bình chọn:
4 trên 92 phiếu
Bài tiếp theo
*


Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay


Báo lỗi - Góp ý
*
*
*
*
*
*
*
*


TẢI APP ĐỂ XEM OFFLINE


× Báo lỗi góp ý
Vấn đề em gặp phải là gì ?

Sai chính tả Giải khó hiểu Giải sai Lỗi khác Hãy viết chi tiết giúp briz15.com


Gửi góp ý Hủy bỏ
× Báo lỗi

Cảm ơn bạn đã sử dụng briz15.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?

Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!


Họ và tên:


Gửi Hủy bỏ

Liên hệ | Chính sách

Đăng ký để nhận lời giải hay và tài liệu miễn phí

Cho phép briz15.com gửi các thông báo đến bạn để nhận được các lời giải hay cũng như tài liệu miễn phí.